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Expected and unexpected routes to synchronization in a system of swarmalators
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Systems of oscillators whose internal phases and spatial dynamics are coupled, swarmalators, present diverse
collective behaviors which in some cases lead to explosive synchronization in a finite population as a function
of the coupling parameter between internal phases. Near the synchronization transition, the phase energy of the
particles is represented by the XY model, and they undergo a transition which can be of the first order or the
second depending on the distribution of natural frequencies of their internal dynamics. The first-order transition
is obtained after an intermediate state (static wings phase wave state) from which the nodes, in cascade over
time, achieve complete phase synchronization at a precise value of the coupling constant. For a particular case of
natural frequencies distribution, a new phenomenon, the rotational splintered phase wave state, is observed and
leads progressively to synchronization through clusters switching alternatively from one to two and for which
the frequency decreases as the phase coupling increases.

DOI: 10.1103/PhysRevE.110.L062301

Studies on dynamical systems’ synchronization (DSS) be-
gan in 1665 [1]. DSS describes the coherent behavior of
interconnected dynamical systems and it is observed in ar-
eas like pacemaker’s rhythmic evolution [2,3], flocking birds
[4–6], and fish [7–9]. In physics, it appears, among others, in
synchronous pendulum motion and oscillators with intermit-
tent coupling [1,10–12].

Subsequent studies deepened DSS understanding, includ-
ing Winfree’s work on circadian rhythms [13] and Kuramoto’s
phase synchronization model [14]. Research expanded into
complex networks, exploring multilayer structures with and
without amplification effects [15,16].

Synchronization applications span various contexts [17]
with coupled chaotic oscillators advancing the field [18–20].
Transition to synchronization in complex networks, partic-
ularly in systems with moving elements, attracted consid-
erable interest and was the subject of extensive research
[20–22].

Recently, a swarmalator model coupling the systems’ spa-
tial positions with the Kuramoto model’s phase dynamics was
introduced for mobile systems [23]. Swarmalators exhibit five
main behavior patterns depending on the coupling strength
between spatial and phase dynamics [23–25]. Lizarraga and
Aguiar [26] improved O’Keeffe et al.’s model [23] by in-
corporating an external force, showing that the swarmalator

system can synchronize or aggregate as the force’s amplitude
increases.

The explosive collective transition to synchronization in
complex networks found by Gómez-Gardenes et al. can occur
in scale-free Kuramoto networks [27]. Skardal and Arenas
[28] revealed that disorder in the natural frequencies, depend-
ing on its amplitude, can also trigger explosive transitions.
Similarly, other studies have uncovered explosive synchro-
nization in adaptive and multilayer networks [29–31].

According to recent findings, two-dimensional (2D) swar-
malator systems can exhibit first-order transition under
attractive and repulsive interaction’s effect in a swarmala-
tor’s multiplex [32]. Based on the swarmalators’ 2D model
proposed in Ref. [23], Sar et al. developed a 1D model show-
ing that random pinning on swarmalators can lead a system
to chaotic behavior [33]. Others have investigated the exis-
tence of antiphase synchronization between two swarmalator
groups [32,34]. While these studies and others [35–37] ex-
plore the swarmalator model primarily through pairwise
interactions, real-world systems often involve more complex
dynamics. To bridge this gap, a new model incorporating
higher-order interactions considers relationships beyond just
two elements within a population [38]. This approach aims to
capture better the complexity of interactions observed in real
systems.
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FIG. 1. Pattern formations of N = 100 swarmalators presented in Refs. [23,41] for different values of coupling parameters J and K .
Scatter plot of the network and corresponding internal phase states, showing the following: (a) and (f) static async state (J = 0.1, K = −1);
(b) and (g) active phase wave (J = 1, K = −0.75); (c) and (h) splintered phase wave (J = 1, K = −0.1); (d) and (i) static phase wave state
(J = 0.1, K = 0); and (e) and (j) static sync state (J = 0.1, K = 1). Notice that the name of the phases refers to the spatial distribution of the
agents.

This work highlights the effect of the internal dynamics’
phase coupling strength on the spatial dynamics of swar-
malators and vice versa. We investigated the influence of the
natural frequencies of the swarmalators’ internal dynamics
during the transition to phase synchronization and found that
explosive or first-order phase transition is not always a char-
acteristic of these systems.

Consider a model of identical swarmalators confined to
move in a 2D space like in O’Keefe et al. [23]. The position
and the phase of each entity are coupled and described by
Eqs. (1) and (2):

Ẋi = vi + 1

N

N∑
j �=i

[Fatt (Xj − Xi )W (θ j − θi ) − Frep(Xj − Xi )],

(1)

θ̇i = wi + K

N

N∑
j �=i

Hatt (θ j − θi )G(Xj − Xi ), (2)

with j = 1, 2, ..., N ; θi is the internal dynamics’ phase of each
swarmalator, represented by a Kuramoto-like model; Xi =
(xi, yi )T is the position coordinates in the ith entity space,
N is the population size of swarmalators; and vi and wi are
the velocity and natural frequency of each element, respec-
tively. We suppose that the system’s dynamics is defined by
the spatial angle φ, which describes its position defined by
φi = tan−1(yi/xi ), and the coupled phase θi.

The model presents an attractive and a repulsive behavior
due to the existence of two interaction forces: a long and
a short-range interaction, represented by the spatial interac-
tions Fatt and Frep, respectively, and Hatt , the phase interaction
[23,26]. The competition between Fatt and Frep generates clus-
ters of particles with sharp boundaries, like in Ref. [39]. The
functions W and G represent the internal dynamics’ influence

on the oscillators’ movement and vice versa, respectively.
Thus, the model presented previously in Eqs. (1) and (2) can
be rewritten as

Ẋi = vi + 1

N

N∑
j �=i

[
Xj − Xi

|Xj − Xi| (A + J cos(θ j − θi ))

− B
Xj − Xi

|Xj − Xi|2
]
, (3)

θ̇i = wi + K

N

N∑
j �=i

sin(θ j − θi )

|Xj − Xi| . (4)

In Eq. (3), the interaction between the oscillators in space
is modulated by the term A + J cos(θ j − θi ) with A = B = 1.
Let vi = v and ωi = ω; therefore, v = ω = 0. K represents
the phase coupling, and J represents the attraction or repul-
sion between the system’s particles. Positive values of the
coupling parameter J lead to an attraction between particles
with the same phase. Conversely, the opposite behavior is
observed when J < 0 [23,26,40]. Summarizing, depending
on the values of J and K, the swarmalators’ dynamics vary
from aggregation to synchronization, as shown in Fig. 1
[23–26,40,41].

The dynamics of swarmalators impose that they present
only phase synchronization, since two agents cannot occupy
the same spatial position but can nevertheless have the same
internal phase. Per the current literature, we use the order pa-
rameter R defined [14,42–44] to characterize synchronization:

Rel� = 1

N

N∑
i=1

elθi , with l2 = −1. (5)

When the internal dynamics of the ith and jth particle are
synchronized, θi = θ j and the R norm tends to 1, otherwise
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FIG. 2. Influence of internal dynamics’ phase coupling K on the
spatial dynamics of swarmalators represented by the order parameter,
R, and the complex order parameter, S. The step of K is equal to
0,01 and spatial coupling J = 1 (See movie 1 in the Supplemental
Material [47] where we show the evolution of the dynamics before
and at the transition to synchronization as a function of K).

to 0. To measure the correlation between the spatial angle
(angular position) φ and the internal phase dynamics θ , we
define another order parameter S [23,24,26,40]:

S±el�± = 1

N

N∑
i=1

el (φi±θi ), with l2 = −1, (6)

where S = max(S+, S−) is the real part of the complex order
parameter. If S = 1 there is full correlation between φ and θ ,
and if S = 0 (or less than 1) it indicates a lack of correlation.

Consider a system of N = 50 units in a 2D space. The
initial conditions of the positions are uniformly and randomly
selected between [−1, 1] with an initial phase θ between
[−π, π ]. To solve Eqs. (3) and (4) we use the fourth-order
Runge-Kutta integration algorithm with an integration step of
dt = 0.05. We study the long-term behavior reached by the
swarmalator system after 20 000 iterations.

Figure 2 presents the Kuramoto order parameter’s evolu-
tion as a function of the coupling parameter K showing an
explosive transition from no synchronization between swar-
malators for K < 0 to phase synchronization for K > 0.

The literature shows that the explosive transition affects
the correlation between the spatial and internal dynamics of
the swarmalators, which depends on the coupling constant K
[23–26,45]. This correlation occurs in the splintered phase
wave (SpPW) state because the spatial dynamics are highly
influenced by the phases synchronizing in clusters before
complete synchronization occurs. Figures 2 and 3 depict that,
for K > 0, the correlation between swarmalators’ spatial and
phase dynamics is drastically reduced when the system syn-
chronizes. For the SpPW and the active phase wave (APW)
states, the swarmalators move around space [23,45,46] and
we calculate that S > 0, the mean velocity V is nonzero and

positive (V > 0) (with V = 1
N

∑N
i=1

√
ẋ2

i + ẏ2
i ), and R = 0.

S = 1, implying that the phase and the spatial angle are per-
fectly correlated, is only possible in the SpPW and SPW states
shown in Figs. 1(c) and 1(h) and Figs. 1(d) and 1(i).

The range K < 0 is associated with the correlation range
between phase and spatial dynamics (S ≈ 1). Furthermore,
the correlation S is also influenced by the spatial coupling

FIG. 3. Order parameter S versus coupling K, showing the evo-
lution of the correlation between θ and φ for different values of the
phase coupling J .

strength J . Indeed for K < 0 and small values of J, there is
no correlation between θ and φ (this means S � 0) and the
correlation appears when J increases (always for K < 0) (see
Fig. 3). We observe no correlation for a synchronized state
(K > 0).

To reach explosive synchronization for J = 1, the swar-
malators move from the SpPW state [Figs. 4(a) and 4(c)] to
the static wing phase wave (SWPW) state [Figs. 4(b) and
4(d)] [with properties similar to the static phase wave (SPW)
state] before they get to the static sync (SS) state. The stability
of this new state, an unexpected path to synchronization, is
proven in the Supplemental Material [47–49], where we show
that the state is stable in the sense of Sekieta and Kapitaniak
[50] and Fermat and Solís-Perales [51]. The transition, from
the SWPW state to the SS state, occurs at K = 10−4 where
the internal phase nodes are getting together in a cascade as
time increases (Fig. 5); here, the number of independent states
decreases with increasing time. The dynamics completing the
transition can be seen in movie 3 of the Supplemental Material
[47]. Note that the rotational motion of the phases illustrated
in Fig. 4 persists until synchronization, despite the cascade
effect shown in Fig. 5. This behavior is visible in movie 3 of
the Supplemental Material [47].

To continue the study of the system’s evolution towards
the explosive transition to synchronization, we explore the
energy of the swarmalator systems for the case of constant
frequencies plotted in Fig. 6 as a function of K . We took
advantage of previous works where we used the Hamiltonian
formalism to understand the transition to synchronization in a
star network of coupled oscillators [52], as well as to justify
the existence of chimera and multichimera states [53].

Near synchronization, when the spatial distance between
the swarmalators is practically constant and since the coupling
in Eq. (4) is positive, the individual phase dynamics is that
of a conventional XY model and the Hamiltonian becomes
[46,54–58]

Hi = − K

2N

N∑
i �= j

cos(θi − θ j ). (7)

The threshold value of the phase coupling K where the syn-
chronization appears is Kc = 0.005 (and not zero as assumed
before), and as shown in Fig. 6, the energy of the system
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FIG. 4. Route to synchronization (the SpPW state, panels (a) and
(c), is shown in movie 2 of the Supplemental Material [47]) where
both the spatial evolution and the phase evolution are presented in a
polar representation.

decreases when the swarmalators’ phases synchronize. Since
phase synchronization implies that θi = θ j (for all i and j),
Eq. (7) becomes

Hc = −Kc

2
. (8)

From there, the minimum energy for which swarmalators
synchronize is equal to Hc. This observation could explain that
the apparently explosive transition to synchronization is in
fact a process of energy loss where the elements synchronize
to minimize the energy. Now let us look at the order of the
phase transition as the system loses energy.

When the XY model represents the energy, Eq. (4) reduces
to the well-known Kuramoto model [14]. Let us summarize
how the present literature stands on this problem.

(a) According to Pazó [59], the Kuramoto model has a
first-order transition from incoherence to synchronization in
the thermodynamic limit, provided the natural frequencies are
evenly spaced or uniformly distributed in a finite range.

(b) Gómez-Gardeñes et al. [27] showed that, when the
natural frequency and a node’s degree are equal, there is
an explosive transition in a scale-free network of Kuramoto
oscillators.

FIG. 5. Time dynamics of the swarmalators for K = 10−4

showing the change of the number of nodes that are out of synchro-
nization. Here the system moves from SWPW to SS states through
the cascade route to synchronization at the critical value of K .

FIG. 6. Energy Hi of each entity of the system as a function of
the phase coupling K.

(c) Skardal and Arenas [28] observed that adding infinites-
imal disorder induces an explosive transition to synchroniza-
tion for the case discussed in item (b).

(d) Leyva et al. [60] extended results and although they
claim that “a sharp, discontinuous phase transition is not re-
stricted to the above rather limited and apparently opposite
cases [27,61], but it constitutes, instead, a generic feature
of the synchronization of networked phase oscillators,” their
studies consider systems where the natural frequencies cannot
be equal between themselves, or to the mean. This is neither
our case, where we consider all natural frequencies equal to
0, nor that of Gómez Gardeñes et al., which has a very low
probability of not repeating values of frequencies.

(e) Hong and Martens [31] studied phase transitions in an
XY model related to a variant of the Kuramoto model for cou-
pled oscillators. They found that for the case without noise,
the system shows features of a first-order phase transition at
complete synchronization, while this transition is continuous
for the noisy case.

As shown by Eqs. (3) and (4), our system belongs to
the class discussed by Hong and Martens, and it reduces to
an XY model with a first-order phase transition. Meanwhile,
the problem of different natural frequencies is not so clear.
To search for an explanation, we modified our system and
studied three cases where natural frequencies are distributed
as follows.

(a) The frequency is randomly distributed. Each oscillator
is subject to a different frequency generated by a Rand func-
tion. From this random frequency distribution, we can see
that, although the system synchronizes, the transition is not
explosive (Fig. 7).

(b) The frequency is distributed in two groups of swarmala-
tors. One group has a constant frequency while the other one
is affected by noise, defined as follows (w1 = 0.005):

FIG. 7. Order parameter (a) and energy of swarmalators (b) as a
function of phase coupling strength K for (case a).
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FIG. 8. Order parameter (a) and energy of swarmalators (b) as a
function of phase coupling strength K for (case b).

(1) 1st group: from 1 to N
2 , w(i) = w1;

(2) 2nd group: from N
2 + 1 to N, w(i) = w1 + ε, with

ε = 10−1.
Results are shown in Fig. 8, where we notice that the

sudden transition has disappeared.
However, for this distribution of frequencies and for K ≈

−0.015 the swarmalators are regrouped in clusters, meaning
R ≈ 0, S ≈ 1, and V �= 0, properties which normally describe
the SpPW state [23]. In addition to these properties, these
clusters are rotating (see snapshots in Fig. 9), where the inter-
nal phases of nodes are plotted in blue dots [panels (a1), (b1),
and (c1)], while their spatial positions, in polar coordinates,
are given in red dots [panels (a2), (b2), and (c2)] for three
values of time.

Thus this dynamics is a rotational splintered phase wave
(RSpPW) state characterized by the value 0 of the parameter
mi = 0 given by Eq. (6) in Ref. [62] and defined by its expres-
sion mi = 1 − 0.5(max{cos[φi(t )]} − min{cos[φi(t )]}) for all
nodes. Even if the total number of clusters in the considered
case remains at seven, it appears that the number of nodes in
the clusters can change with time.

(c) The frequency is distributed in three groups of swar-
malators:

(i) 1st group: from 1 to 15, w(i) = w1;

FIG. 10. Order parameter (a) and energy of swarmalators (b) as
a function of phase coupling strength K for (case c).

(ii) 2nd group: from 16 to 31, w(i) = w1 + ε, with
ε = 10−2;

(iii) 3rd group: from 32 to N , w(i) = rand/10.
We notice here that the phase transition towards synchro-

nization is no longer explosive.
We studied the transition to synchronization in this case

in detail and found that it is not a first-order phase transi-
tion. First the oscillators cluster and then they merge into
asymptotic synchronization, as can be seen in Fig. 10(b) with
emphasis on the inset.

Therefore, while presenting here some possible synchro-
nization cases in swarmalators, a thorough study of this and
related problems on phase transitions in systems of mobile
oscillators and their representation by the Kuramoto model is
necessary.

Summarizing, in this work, we have studied the behavior
of systems where phase and spatial dynamics are coupled,
called swarmalators. The effect of positive and negative phase
coupling strength on the system’s dynamics under the impact
of initial conditions was shown. As proposed in Ref. [23], the
five steady states of swarmalators were characterized, and it
was found that the system maps into an XY model with an
explosive transition to the synchronization when the system is
subject to an attractive (K > 0) and repulsive (K < 0) phase
coupling. Based on the conventional mean-field XY model, the

FIG. 9. Snapshots of all internal phases [panels (a1), (b1), and (c1)] and nodes positions [panels (a2), (b2), and (c2)] showing the changes
in the positions of clusters for t = 150 × 103, t = 151 × 103, and t = 152 × 103 for (case b).
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mean energy of a system using the Hamiltonian formalism has
been evaluated. This evaluation highlights that the transition
of swarmalators to synchronization can be explained as a
process of energy loss which leads them to synchronize when
the critical value Hc = −Kc

2 reaches Kc = 0.005, to minimize
this energy. During this study, some expected results were ob-
tained like the second-order transition and pattern formation
as described in Ref. [23]. However, in addition to the new state
as the rotational splintered phase wave, another unexpected
result here is the existence of first-order transition without
correlation between the natural frequencies of elements and
the degree of their nodes. Indeed, this kind of transition, which
was shown previously to happen when the natural frequen-
cies of the oscillators are equal to the number of links they
possess [27], always occurs when the natural frequencies of
all oscillators are equal, but it disappears when they show
complete or partial disorder. To better understand why the
first-order transition occurs, we studied three main cases of

natural frequency distribution. This hypothesis showed that
the way natural frequencies are distributed can significantly
affect the type of transition in swarmalator systems. By study-
ing the pretransition dynamics in detail, we found that the
internal phases undergo a rotational wave state, the appear-
ance of which we were unable to explain. This will be the
subject of further work. By making a detailed investigation of
the dynamics before the transition, we found that the internal
phases undergo a rotational wave state, which we have not
been able to explain why it appears there. More on this point
will be done in future work.
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